
 1

Autonomous Dynamically Self-organizing and Self-healing
Distributed Hardware Architecture – the eDNA Concept

Michael Reibel Boesen1, Jan Madsen1 and Didier Keymeulen2.

1 Technical University of Denmark

Richard Petersens Plads, Bygning 322
Kgs. Lyngby, Denmark 2800

+45 45752505
{mrb,jan@imm.dtu.dk}

2 Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 91109

818-354-4280
{didier.keymeulen@jpl.nasa.gov}

Abstract—This paper presents the current state of the
autonomous dynamically self-organizing and self-healing
electronic DNA (eDNA) hardware architecture (patent
pending). In its current prototype state, the eDNA
architecture is capable of responding to multiple injected
faults by autonomously reconfiguring itself to accommodate
the fault and keep the application running. This paper will
also disclose advanced features currently available in the
simulation model only. These features are future work and
will soon be implemented in hardware. Finally we will
describe step-by-step how an application is implemented on
the eDNA architecture.

TABLE OF CONTENTS

1. INTRODUCTION ...1
2. EDNA: FUNDAMENTAL CONCEPTS2
3. EDNA EXPLAINED ...2
4. SELF-PROGRAMMING ...6
5. SELF-HEALING ..6
6. PROTOTYPE ..8
7. USE-CASE EXAMPLE ..9
8. FUTURE WORK: ADVANCED FEATURES11
9. CONCLUSION ..11
BIOGRAPHY ..12

1. INTRODUCTION

In the age of ubiquitous computing all parts of the industry
is in need of highly robust hardware platforms. Not only
due to the fact that embedded systems are given
increasingly often life-saving, life-depending roles, such as
autonomous subway systems, airplanes, cars, hospital
equipment etc. An unprotected hardware fault in either of
these will have dire consequences – and consequently
hardware faults in such systems are always protected by
huge amounts of redundancy. But even the state-of-the-art
hardware fault prevention technique – Triple Modular
Redundancy (TMR) has its limits. A fault in the voter
circuits or a permanent fault in one of the copies will
eliminate the TMR’s ability to identify the correct value,

while a repair of the faulty module will allow it to
reconstruct the TMR. The capability of a hardware platform
to autonomously be able to repair itself becomes
particularly important in space, where a repair mission will
be either a great risk, impossible or very expensive or all of
the above.
In the last decade several biologically inspired
reconfigurable self-healing hardware platforms have been
proposed [3,4,5,6] all of these suffer from problematic
scaling issues due in particular to a too low level of logical
granularity. Consequently, (to the best of our knowledge)
neither of these has ever been applied to a real world
application.
Other approaches, such as roving STARS [8] uses a
centralized approach, where a centralized processing unit is
responsible for performing the fault tolerance mechanism.
Clearly, approaches using a centralized unit have single-
point-of-failure properties, which in a high reliability
environment would be unacceptable.
The eDNA architecture [1,2] is aimed for an ASIC
implementation and will consequently be an entirely new
type of fault-tolerant coarse grained FPGA due to the
increased level of logical granularity, when compared to
other approaches. The increased level of logical granularity
makes the cost of the self-healing feature bearable [2].

The following section provides an overview of the
fundamental concepts of the eDNA system, section 3
describes the details of the eDNA concept. Section 4
illuminates how the eDNA architecture is capable of Self-
programming. Section 5 illuminates how the eDNA
architecture is capable of Self-healing. Section 6 describes
the implementation of the prototype and its current
limitations. Section 7 illustrates how to implement an
application on the eDNA prototype. Section 8 describes
advanced features such as the fault-detection protocol and
dynamical application scaling not yet implemented in the
eDNA prototype but implemented in the simulation model
of the final eDNA architecture. Finally, section 9 presents
our conclusion.

 2

2. EDNA: FUNDAMENTAL CONCEPTS

eDNA is the name of the entire package described in this
paper – consequently, we have two fundamental terms; the
eDNA architecture and the eDNA program.

The eDNA architecture consists of a distributed array of
multiple homogenous processing units called electronic
cells (eCells). The job of the eCells is to implement the
eDNA program, which is specified by the programmer. The
eDNA program is translated into a binary version of the
eDNA, which is then fed to all eCells which all store it a
RAM block. Each eCell implement a part of the eDNA
program. The specific part, which an eCell implement is,
called the gene of this particular eCell.

Each eCell contain a microprocessor and a 32 bit ALU
which is configured by the microprocessor to perform a
certain function described by the gene. The program run by
the microprocessor is termed the ribosomal DNA (referring
to the intracellular organelle in biological cells, responsible
for synthesizing proteins and consequently functionality of
the cells). The ribosomal DNA is a program written for the
eCell microprocessor, which performs self-programming
and self-healing of the eDNA architecture. All eCells
contain a homogenous copy of this program.

Observe that no centralized processing unit is present. The
eCells completes the self-programming and self-healing
completely autonomous.

The eCells communicate with each other through a
Network-on-Chip (NoC) 2D-mesh-8 architecture, where
each eCell communicate with at most 8 adjacent neighbors
depending on position. The NoC completes package
transfers between eCells using a fault-tolerant data-transfer
protocol, which can route around dead links.

Figure 1 shows an overview of the entire eDNA package.

Figure 1 An overview of the eDNA concept

3. EDNA EXPLAINED

The two fundamental concepts of the eDNA architecture is
the electronic DNA (eDNA) and the programming model
used to map it onto the eCells of the eDNA architecture.

The electronic DNA (eDNA): Concept

The eDNA is a program written in a programming language
known as the eDNA language [1,2]. The BNF notation of
the language is shown in Figure 2. As can be seen the
eDNA language contains assignments, control structures
such as if-then-else and loops, as well as explicit control
for parallelism (the <parallel> syntax). With the
<parallel> syntax the programmer can mark which
parts of the code should be executed in parallel.

Figure 2 The eDNA language

 3

There are two parts to the programming model: (1)
Synthesis and (2) mapping. The synthesis is inspired by Ian
Page [7]. Ian Page proposed a way of synthesizing software
code directly in hardware. The idea was to replace the
individual parts of a programming language with hardware
blocks. We have adapted these blocks to fit the eDNA
architecture. The main four parts of the eDNA language
(assignments, if-then-else, while-loop and parallel) can be
seen on Figure 3(a)-(d) as well as their hardware block
counterparts. There are two components to each block; (1)
synchronization and (2) logic. When a program is executed
we want the order of instructions to stay the same as in the
program. This is synchronized using the start/finish
signaling. Each of the four blocks in Figure 3 features a
start/finish signal. Whenever the data-flow of the program
reaches a particular block, the start signal is kept high.
Whenever a block is finished executing, a finish signal will
be sent out, which will become the start signal of the next
block, hereby activating it. Finally, the logic is the logical
expression of the program statement. For instance in the if-
then-else block (Figure 3(b)) the part denoted by IF-G
BOOL is the logical expression of the if-then-else sentence,
which consists of the Boolean operation related to the
sentence plus some logic to control whether to execute
Statement S1 or Statement S2 – i.e. if the if condition is true
S1 will receive a high start signal and S2 will receive a low
start signal.

Figure 3 Synthesis of eDNA program code

Figure 4 Program divided into the blocks of Figure 5

Figure 4 shows an example of an eDNA program, showing
how to apply the blocks in a modular way to it. On the top
level we have the while block Figure 3(c), inside this we
have an if-block Figure 3(b) and finally, inside this one we
have two EXPR blocks Figure 3(a).

Formal model of the eDNA program

By applying these blocks to the eDNA program code we
can derive a task-graph =<V,E>, where V is a set of
vertices and E is a set of edges. The taskgraph divides the
program into several smaller eDNA-tasks.

An eDNA-task d V is physically represented on the
eDNA architecture as Figure 3(a), the IF-G BOOL part of
Figure 3(b) or the W-G BOOL part of Figure 3(c). Where d
is defined as the depth of d in the task-graph found using
Breadth-First-Search – consequently, the source node in the
task-graph is 0 and the sink N-1 where N is the number of
eDNA-tasks in . Furthermore, we will make the restriction
that all tasks in will have a unique index – even if two
tasks are parallel will they be given two different indices.

An eDNA edge i=>j{start,data} E represent
communication between i and j. Furthermore, an eDNA
edge has a type associated with it, which can either be start
or data. A start type edge directly represents the start/finish
signaling of Figure 3. A data type edge represents the Z
output from Figure 3(a). This implies that the source node
of this edge must be of the type of Figure 3(a), since only
the EXPR block can output data.

An example eDNA task graph can be seen in Figure 5. The
task graph implement the eDNA code seen in Figure 6. As
an example of the edge-definition take the data edge going
from 3 to 0. Using the definition, this edge would be
known as 3=>0 {data}.

 4

Figure 5 Task-graph representation of an eDNA
program.

Figure 6 An example of eDNA program code

Programming model: eCell programming

We now know how to get from a program description to
hardware. Next part is to realize this hardware on the eDNA
architecture. For this purpose we will introduce the concept
of eCell types. An eCell type is directly related to the task d
it implements, consequently eCells can be either an EXPR-
cell, IF-cell or a WHILE-cell – corresponding to Figure
3(a)-(c), respectively. This means that an eCell, which is
implementing an EXPR-type task, is an EXPR-type eCell.
An EXPR-type eCell will have to contain 3 registers (Z, A
and B) and an ALU, which can perform the expression
applied to A and B. An IF-cell and WHILE-cell contains the
logic needed to evaluate the boolean condition in order to
decide where to send the start signal. Note, that the eCells
are homogenous, meaning that all eCells have the potential
to become either one of the types. This means that each
eCell basically contains an ALU, which can be reconfigured
according to the task this eCell is required to perform, i.e.
whether to be an EXPR cell, an IF-cell or a WHILE-cell
(Figure 7). This leads to a much higher level of logical
granularity than previous self-healing architectures
[3,4,5,6,8]. The eDNA architecture is closer to a
reconfigurable datapath array (rDPA) than an FPGA in
terms of logical granularity.

Figure 7 eCell Type Selector

Programming model: Mapping

In order to explain how to map eCell types to eCells we first
have to elaborate on the eDNA architecture. A schematic of
the eDNA architecture is shown in Figure 8. The figure
shows the key parts of the eDNA architecture. Each square
represents an eCell. Note that the operator in the middle of
the square defines the eCell type and consequently,
represents the task d that the eCell implements. Observe
that some of the eCells does not have a type; these eCells
spare-eCells. The spare-eCells contain exactly the same
hardware as the eCell with a type, but no task has been
mapped to it.

Figure 8 A 3x3 eDNA architecture

Mapping eCell tasks to the eDNA architecture is a matter of
creating the mapping of a task i to an eCell Cj, such that
M(i)Cj and where i=j, where i is the eCell number of an
eCell as seen on Figure 8. The eCell number is an integer
from 0 to K-1 (where K is the total number of eCells), and
each eCell has an unique number. A task d, which is
mapped to an eCell Cd, is defined as the gene of the eCell
Cd’s.

Observe that this means that there’s a 1:1 relationship
between the eCells and the example task graph of Figure 5,
i.e. each eCell implement one task.

eCell numbers are distributed to the eCells when the eDNA
architecture is initialized and can also be changed

 5

dynamically during the execution of an application. This
means that the positioning of the eCell numbers on the
eDNA architecture defines the position of a particular task
of the application. Obviously, the position of the tasks on
the array impacts performance of the application, because
the transfer of data in the NoC will use additional time pr.
link, which has to be traversed. Therefore, we have
developed a metaheuristic algorithm based on Tabu Search,
which offline optimizes the mapping of identifiers to eCell
positions in the network. This is an optimization issue and
consequently not the scope of this paper.

Programming model: eDNA Program Representation

In order for an eCell to implement a task d the following
information about the task are needed:

1. The type of d (Figure 3).

2. The type of all edges d=>j{start,data} E (the
edges for which d is the source) (Figure 5)

3. All eCell numbers j for all edges d=>j{start,data}
(all eCell numbers – and consequently task indices
- that the outgoing edges of the task d points to)
(Figure 5).

4. For all tasks i, where i=0…, N the mapping
M(Ci)(Xi,Yi), where Xi and Yi are the
coordinates of Ci in a 2D grid.

(1) is the ALUop signal from Figure 7. (2) is a variable
telling the eCell whether the type is start or data (1). (3) is
the relative address i.e. eCell number to communicate with.
(4) is a mapping of eCell numbers to absolute locations
(X,Y in 2D grid) in the 2D-mesh NoC, which utilizes an
adaptive XY-routing algorithm capable of routing packages
around dead links and faulty eCells. This mapping is in its
essence a routing table. Consequently, the combination of
(1)-(3) is the information stored in a gene of an eCell.

An example of a routing table and genes are shown in
Figure 9. The example in Figure 9 shows the gene related to
the b=b-a in the eDNA program segment seen of Figure 6.
On top we have the routing table. The left column contains
the eCell number, which is then related to the physical
address in the network in the right column. This physical
mapping of eCell numbers to coordinates can also be seen
in Figure 8. The lower table contains the gene, which
consists of multiple gene-instructions. As seen the three
pieces of information mentioned earlier are present (eCell
type, edge type, communication target) plus one additional
piece of information, which is a program counter (PC). The
PC tells the eCell the address of the next gene-instruction to
interpret. A gene can consequently, be compared to an
instruction in a microprocessor. Note that this gene can be
directly derived from the task graph of Figure 5. Also note

that when a particular gene for an eCell ends, the eDNA
contains an empty gene-instruction.

The eCell executes the genes in the following way:

1. Start at PC=00

2. Program and execute the ALUop according to the
eCell type

3. Attach a package header which is equal to the edge
type

4. Target the package at the relative address under
“Target”.

5. Translate relative address to absolute address by
using the routing table.

6. Send package.

7. Increment program counter according to PC field

8. Repeat from 1 until an empty gene is reached.

Figure 9 eDNA representation example: Routing table
and genes

To handle this, we need more logic than described by
Figure 7. The new eCell can be seen in Figure 10. The ALU
from Figure 7 is still present, but we have added 2 RAM
blocks (eDNA RAM and Gene RAM) and an eCell
processor. The eDNA RAM contains the entire binary
eDNA program and the Gene RAM contains the gene of
this particular eCell. The eCell processor controls the self-
programming and self-healing.

 6

Figure 10 eCell with processor and RAM

4. SELF-PROGRAMMING

Upon initialization the eDNA program in its binary form is
distributed to all eCells together with the routing table
(Figure 9 in binary encoding) and is stored in the eDNA
RAM. All eCells consequently contains the eDNA program
code and routing table.

With the eDNA program in the eDNA RAM we can now
start the self-programming which for each eCell Cd consists
of two steps:

1. Localization of task/gene d.

2. Copying of the task/gene d from eDNA RAM to
the Gene RAM

Both steps are simple; the localization is simply to count the
number of empty gene-instructions in the eDNA. Whenever
this count is equal to Cd, the eCell has located its gene. The
copying of the code from the eDNA RAM to the gene RAM
block is trivial.

5. SELF-HEALING

The autonomous self-healing mechanism consists of 5
phases:

1. Fault-detection

2. Spare-eCell localization

3. Healing of the faulty eCell

4. Link repair

5. Data maintenance

Fault-detection

Whenever a fault occurs, we have to detect it. We have
devised a fault-detection mechanism, which utilizes the
homogenous nature of the eCells to detect faults in a way
similar to how triple modular redundancy (TMR) works.

Each eCell has a gene, which is activated and executed
upon reception of a start signal. This gene we denote the
primary gene. Similarly, we define a secondary (set of)
genes, denoted secondary genes and a secondary start
signal that will activate and execute the secondary genes.
The secondary genes for an eCell Cd are defined as:

 i V , id {start} E

i.e. all tasks i in V for which there exists and start-type
edge, whose destination is Cd. The application of this
definition to the task-graph of Figure 5 is seen in Figure 11.
The idea is that this eCell will test the output of the eCell
located one step behind in the execution of the program.
Note that in the case of a branch (IF-cell), this might be two
genes. Refer to the WHILE eCell of Figure 5 for an
example. The WHILE eCell’s secondary genes are the gene
of the A-B eCell and the B-A eCell, because both of these
eCells send the start package to the WHILE eCell.

Just as primary genes has a start signal secondary genes has
too. The secondary start signal, which activates the
secondary gene(s) are sent by the Ci to the Cd for which the
following holds:

(i j{start}, jd {start})

This means that it is sent by the eCell located two execution
steps behind Cd. The reason for this is that we want to make
the impact of the fault detection protocol as little as possible
on the performance of the application and in this way we
can do the fault detection in semi-parallel to the real
execution. In the case of the WHILE eCell of Figure 5 the
secondary start signal is sent by the IF eCell. Upon
reception of a secondary start signal the eCell will execute
the secondary gene(s). A secondary gene only consists of an
ALUop gene describing what the eCell this eCell is
supposed to test is doing in its ALU, i.e. only information
about the eCell type is needed. Note that this means that we
will need 4 more registers (2x2 in case of an IF cell) in
order to be able switch between executing primary genes or
secondary genes. Figure 11 shows Figure 5 augmented with
secondary genes. Observe that in order to provide the data
for the secondary genes data edges might have to be added.
In the case of Figure 11, we have to add an edge going from
2 to 0, because 0 didn’t need A before.

Whenever a primary start signal is sent from Ci it also sends
the result of its primary gene with this package. The
receiving eCell Ck has now already calculated its own result
of this calculation as its secondary genes, so it compares

 7

this result to the result arriving in the primary start package.
If they’re equal no fault is assumed if they’re not equal we
have a fault – but as of yet we don’t know in which eCell.

Figure 11 (a) The primary genes of Figure 5 augmented
with secondary genes in (b)

Therefore, in the case of a fault Ck sends a “test-package” to
a the nearest spare-eCell Cp. This package contains the
eCell number Ci, the A and B registers, plus the two results.
Cp now examines the eCell number (Ci) contained in the
package and self-organizes to implement the same task i. It
then computes the result based on the value of the registers
it received and decides which Ci or Ck that is faulty. Hereby
we have detected a fault. The eCell Cp, which performs the
final test is in the following denoted the fault-detector.

This is similar to TMR because in TMR we also have one
copy, which implicitly decides which set of copies is right
and which is wrong. Two differences between the eDNA
fault detection protocol and TMR exists: (1) eDNA
architecture complete the fault-detection sequentially where
it is done in parallel in TMR, and (2) the fault-detector is
different from fault to fault and consequently the voter who
decides which eCell is faulty is different from time to time –
giving us a higher probability of avoiding voter caused
errors.

Spare-eCell localization

Observe that because the fault detection is performed each
time a primary start signal is received (i.e. when an edge
d=>j{start} is traversed) only one fault is detected at any
one time even though multiple faults may be present – this
is ok since the fault will not have any impact until the faulty
eCell is executed. This simplifies the way the eCells
determines where to move the functionality of the faulty
eCell, because they don’t need to take into account that
other eCells might be moving functionality around at the
same time.

Implicitly included in the eDNA is a list of spare eCells. A
spare eCell is an eCell Cs for which it holds that

0 i K, i, M() C

i.e. if an eCell Cs hasn’t got a task mapped to it,
consequently the eCells which are not in the routing table of
the eDNA. Locating the best spare-eCell is done by
computing the Manhattan distance to all spare-eCells and
selecting the closest. Note in case of many faults we cannot
guarantee a globally optimal selection of spare-eCell with
this protocol, however, this is in general and impossible
problem to solve, since we have no way of knowing when
and where faults will occur. This information will be needed
in order to ensure a globally optimal selection of spare-
eCell.

Healing of the faulty eCell

When we have selected a spare-eCell Cs, all that is needed
to replace the functionality of the faulty eCell Cf at Cs, is to
change the mapping Mf of Cf to Cs, consequently:

M(f) Cf a M(f) Cs

All that is needed to change the mapping is to write a
different coordinate in the routing table for Cf, which was
faulty. Eg. if eCell 00 of Figure 9 was faulty we would
simply need to rename the entry for eCell 00 to the
coordinates of Cs. The new routing table could for instance
become as seen in Figure 12.

In order to do that the fault-detector will need to broadcast a
heal-package to all eCells simply saying to replace the
coordinates at eCell number 00 with (2,2). This replacing is
done in the eDNA RAM, so consequently all eCells will be
reinitialized after that. This will now cause the eCells who
used to communicate with eCell (2,1) to communicate with
eCell (2,2) and it will cause eCell (2,2) to know that it is a
part of the application. Consequently eCell (2,2) will now
copy the genes of the faulty eCell (2,1) from its own eDNA
RAM to its Gene RAM. Hereby we have restored the
functionality of the Cf using nothing but the information
stored in the eDNA. The resulting physical remapping can
be seen in Figure 13.

Figure 12 Self-healing example

 8

Figure 13 Result of the autonomous remapping and self-
heal

Connection repair

Observe that edges, which used to point at Cf now will point
Cs due to the reinitialization.

Data maintenance

In order for eDNA to continue without outputting faulty
data Cs will need to restore the same data (i.e. register A and
B of Figure 10). Static data is no problem, since the eDNA
also contains any initialized values of these registers. So
when Cs is reinitializing to repair Cf it will automatically
gain the initialized values of the A and B registers.
However, dynamic data is harder, since the value of it
depends on the time at which the fault occurred.
Fortunately, the fault detection protocol automatically keeps
track of this data using the secondary genes – due to the
new edges (example Figure 11) we have to add. So when
the fault detector has sent the heal-package it will send the
contents of register A and B. In this way data is recovered.

6. PROTOTYPE

We have developed a prototype of the architecture
described in the preceding sections. So far we have
implemented everything except step 1 and 2 of the self-
healing mechanism. Thus we rely on fault-injection to test
it.

The eCell

The hardware architecture of the eCell implemented in our
prototype can be seen in Figure 14.

Figure 14 Prototype eCell

This architecture is in contrast to classical NoC’s that
consists of separated routers and NA’s. The combination of
router and NA is meaningful for this setup due to the chosen
level of granularity of the eCells, the processing time where
the CPU blocks the NA is short and the package size is
small. Therefore eCells got extended with a store-and-
forward (SAF) routing functionality. This leads to a
simplified homogeneous structure of the system, reduces the
number of hops and eases the failure detection, which will
be implemented in the final design.

The NA consists of a pair of peripheral switches, a number
of registers that are capable of storing a single package and
a state machine that is capable of handling signaling,
package transfers, routing algorithm, triggering the CPU
interrupt and controling the register accesses. A schematic
of the NA is seen in Figure 15.

Figure 15 Network adapter

In order to implement the self-programming and self-
healing algorithm in the most flexible way and to explore
different networks and applications we decided to run a soft
core CPU connected to the NA in each eCell. In the final
version of the eDNA platform this CPU will be substituted
by dedicated logic in order to reduce chip area, complexity
and to increase speed. Due to the small amount of resources
required and its flexibility the PicoBlaze was chosen. The
Xilinx PicoBlaze [9,10] is based on a 8 bit RISC
architecture that is optimized in size for Virtex and Spartan
series of FPGAs. It is provided as a synthesizable source-

 9

level VHDL file which is easy to extend with additional
ports to fit the desired application. There are assembler and
C compiler available. It was possible to implement a test
setup consisting of a 7x7 array of eCells (PicoBlaze and
NA) in a mesh-8 6x8 bit (6 parallel 8 bit registers) package
architecture on a Digilent XUPV2P board. This setup also
includes dedicated input and an output eCells that connect
to a serial interface, allowing the user to input data and
commands to the system and read the results on a terminal.

The first 8 bit of the package are used as package identifier,
which describes the content of the data (e.g start/finish
signaling, variable read/write...). The 8 address bits are split
up in 4 bit X/Y-coordinates, the address space is therefore
limited to 225 cells (0 is no valid address) which is
meaningful for test implementations on FPGAs. The
remaining 4x8 bit are used to carry data.

Network Topology and Routing

The distributed approach used in the eDNA platform creates
a significant over-head by transmitting data packages
among the eCells. In addition to the data exchange, the
start/finish signaling is implemented purely package-based
and will generate additional traffic in the NoC. It is
therefore very important that the prospective network is able
to forward packages in a simple and fast manner since the
performance of the whole system greatly depends on the
network properties.

The NoC is implemented as a 2D mesh-8 topology, which
means that each eCell is connected to its N, NW, W, SW, S,
SE, E and NE neighbor when applicable (Figure 1).

When a NA of an eCell receives a package, it checks
whether the destination address of the package is reached. If
not, then the NA determines the direction of the destination
eCell and sets the output switch to the corresponding
position. Only if the package destination address is reached,
the CPU is interrupted to perform the eDNA functionality.
When the CPU has generated a new package, the NA
checks whether the destination is available by handshaking.
This ensures package rerouting in case of network faults.

Before transmitting, the NA makes sure that the next eCell
on the direct way to the destination eCell is ready. This is
done by handshaking and also includes a dedicated signal,
which reports whether the corresponding eCell is alive or
not. In case the next eCell is busy, the package is sent to one
of the neighboring eCells. This mechanism ensures that
dead or busy eCells on the way to the destination can be
sidestepped. In the eDNA prototype platform, SAF routers
are used and a datagram is equal to a flit. This flow control
digit is defined as the smallest unit of flow control. Due to
these design decisions and the fact that only one package
per parallel statement is routed in the network at the
time, deadlocks and livelocks can be avoided.

Implementation in embedded system

In other work, for the purpose of studying a real world
application we ported the eDNA prototype from the Xilinx
5 FPGA to a National Instruments CompactRIO embedded
system, consisting of a 800MHz PowerPC running
VxWorks, a Xilinx 5 FPGA and analog I/O modules. The
eDNA prototype was implemented on the Xilinx 5 FPGA of
the CompactRIO and used to control and do data processing
for a Fourier Transform Spectrometer. Results are reported
here [11].

7. USE-CASE EXAMPLE

In this example we will implement the Discrete Cosine
Transform (DCT) on the eDNA architecture.

The DCT is a widely used mathematical transform in signal
processing. It expresses a finite sequence of data points as a
sum of cosine functions, which oscillate at different
frequencies. It is used in wide array of applications, such as
image compression and spectroscopy. In this example we
will implement the one dimensional DCT on the eDNA
architecture.

The 1-D DCT is defined by the following equation:

Yk
2

N
 k xn

n0

N 1

 cos
(2n 1)k

2N
 (1)

where Yk is the kth element of the DCT of the data set
X={X0,…,XN-1} and

 k
1

2
1

k 0

k 1,..,N 1

 (2)

The following will explain the simple implementation
procedure to follow to implement an application on the
eDNA architecture.

Application to eDNA program

Equation (1) and (2) can be implemented by the eDNA
program Figure 16. Note that since each eCell do one binary
arithmetic operation we have to split the formula into
several eCells.

 10

Figure 16 DCT eDNA

Compilation of eDNA program to eDNA for the eCells

This eDNA program is typed in the editor of our eDNA SW
Toolkit. The only other information needed is where the
user want the different genes mapped, so the user need to
supply the routing table OR alternatively the user could use
our Tabu Search based algorithm (shortly mentioned in
Section 3) to find a good solution to the mapping problem.

The toolkit will then return the encoded eDNA (of the same
type as Figure 9) for the eCells, a task graph and a software
model of the eDNA, which can be used to perform
simulations on the software model of the eDNA architecture
implemented in the toolkit. Figure 17 shows the kind of
information available from out software toolkit. The top left
window shows the main simulation window where you can
see how the different parts of the eDNA program is mapped
to the eDNA architecture as well as follow package
transfers as the propapate through the network in real-time.
The bottom window shows a Gantt chart representation of
the execution of the eDNA program on the eDNA
architecture. The difference colored boxes represents
different types of communication, such as start signal, data
and handshaking. Finally, the right window shows a task
graph representation of the eDNA program.

Figure 17 eDNA SW Toolkit

Self-healing example

We will now show an example, which shows how the self-
healing works. In this scenario we will inject a fault in eCell
at position (1,2) – the initial placement is seen in Figure 18.

Figure 18 Initial placement of DCT application

The resulting Gantt chart in Figure 19 shows how an
example of the execution of the self-healing algorithm
described in section 5.

 11

Figure 19 Self-healing example

Figure 20 shows the resulting mapping after the self-
healing.

Figure 20 Resulting mapping after self-healing

8. FUTURE WORK: ADVANCED FEATURES

The future work of this architecture is first and foremost to
implement the fault detection and data recovery protocol in
the prototype. Once this is done we will be able to test the
architecture in a real world fault scenario.

Logical granularity scaling

In previous work [2] we have realized that the logical
granularity is of utmost importance to the resulting
performance of the application. Fortunately, the eDNA
architecture provides a very easy way of scaling the logical
granularity up and down.

Currently, the logical granularity at level 1, which means
each eCell implement one gene or one arithmetic operation
of the eDNA program. With minor modification it is
possible to dynamically change the logical granularity of the
eDNA architecture by sending a “logical granularity set”
package to the eCells telling them how many genes they
should implement pr. eCell. Observe that all that is needed

to do this is a bigger register file for holding A and B. The
eDNA is exactly the same.

This will add a very important feature we can call
dynamical application scaling. This feature has several
important benefits:

1. The programmer is now capable of scaling the area
of his application up and down dynamically.

2. The programmer is now capable of scaling the
performance of his application up and down
dynamically.

3. For an application occupying N eCells, eDNA will
now be capable of repairing N-1 additional faults,
because when eDNA runs out of spare-eCells it
can increase the level of logical granularity hereby
making more spare-eCells available.

Currently, we have the dynamical application scaling
working in our software model of the eDNA architecture.
Figure 21 shows a screenshot of our simulator, which shows
what the DCT application would like with a level of logical
granularity at 2. Clearly we have now have 9 additional
available eCells and the application is now more compact.

Figure 21 DCT with (a) a level of logical granularity of
1, (b) a level of logical granularity of 2

9. CONCLUSION

This paper has provided an update on the new developments
of the eDNA architecture. We have formalized the model of
the eDNA architecture in order to introduce the highly
important fault detection and self-healing protocol. In
addition, we have described our prototype implementation
as well as the porting of it to an embedded system for use
with any application. Finally, we have described how to
implement the widely used Discrete Cosine Transform on
the eDNA architecture as well as demonstrated through an
example how the eDNA architecture is capable of self-
healing.

 12

REFERENCES

[1] Boesen, M.R., Madsen, J.: eDNA: A bio-inspired
reconfigurable hardware cell architecture supporting self-
organisation and self-healing. Proceedings of the 2009
NASA/ESA Conference on Adaptive Hardware Systems
(2009) 147–154.

[2] M. R. Boesen, P. Schleuniger, and J. Madsen. Feasibility
study of a self-healing hardware platform. Proceedings of
the 2010 Conference on Applied Reconfigurable
Computing, 2010.

[3] Mange, D., Sipper, M., Stauffer, A., Tempesti, G.:
Toward robust integrated circuits: The embryonics
approach. Proceedings of the IEEE 88(4) (2000) 516–543

[4] Stauffer, A., Rossier, J.: Self-testable and self-repairable
bio-inspired configurable circuits. 2009 NASA/ESA
Conference on Adaptive Hardware Systems (2009) 155–
162

[5] Plaks, T., Zhang, X., Dragffy, G., Pipe, A., Gunton, N.,
Zhu, Q.: A reconfigurable self-healing embryonic cell
architecture. International Conference on Engineering of
Reconfigurable Systems and Algorithms - ERSA’03
(2003) 134–40

[6] Samie, M., Dragffy, G., Popescu, A., Pipe, T., Melhuish,
C.: Prokaryotic bio-inspired model for embryonics. 2009
NASA/ESA Conference on Adaptive Hard- ware Systems
(2009) 163–170

[7] I. Page. Constructing hardware-software systems from a
single description. Journal of VLSI Signal Processing,
(12):87–107, 1996.

[8] Abramovici, M., Strond, C., Hamilton, C., Wijesuriya, S.,
Verma, V.: Using roving STARs for on-line testing and
diagnosis of FPGAs in fault-tolerant applications.
Proceedings of IEEE Computer Society International Test
Conference (ICSM'99), 973-982, 1999

[9] Xilinx: Microblaze processor reference guide - edk 10.1i.
Xilinx User Guide UG081 (v9.0) (2008)

[10] Chapman, K.: Picoblaze 8-bit embedded microcontroller
for spartan-3, virtex-ii, and virtex-ii pro fpgas. Xilinx User
Guide UG129 (v1.1.2) (2008)

[11] Boesen, M.R., Keymeulen, D., Madsen, J., Lu, T., Chao.,
T.: Integration of the Reconfigurable Self-Healing eDNA
Architecture in an Embedded System and Evaluation of it
using a Fourier Transform Spectrometer Instrument
Application, To be published in the Proceedings of IEEE
Aerospace Conference, 2011.

BIOGRAPHY

Michael Reibel Boesen is a PhD-
student from the Technical

University of Denmark (DTU). He
earned his Master of Science in
Engineering from DTU in 2008 and
expects to get his PhD degree in the

summer of 2011. He is the co-inventor on the patent-
application for the eDNA architecture. His research
interests include adaptive and autonomous embedded
systems. Michael is the vice-chair of the IEEE Student

Branch DTU.

Jan Madsen is Professor in
computer-based systems at DTU
Informatics at the Technical
University of Denmark. He is
Deputy Head of DTU Informatics

and Head of the Section on Embedded Systems Engineering.
He is the leader of the Hardware Platforms and
Multiprocessor System-on-Chip Cluster within the
European Union Network of Excellence on Embedded
Systems, ArtistDesign. Jan Madsen is the lead delegate for
Denmark in the Governing Board of the ARTEMIS Joint
Undertaking, a new pan-European research initiative for
public-private partnership in Embedded Systems. He has
been Program Chair for DATE (International conference
on Design, Automation and Test in Europe) and Program
and General Chair for CODES (International conference
onHardware/Software Codesign). Jan is the other co-
inventor on the patent-application for the eDNA

architecture.

Didier Keymeulen received the BSEE,
MSEE and Ph.D. in Electrical
Engineering and Computer Science
from the Free University of Brussels,
Belgium in 1994. In 1996 he joined the
computer science division of the

Japanese National Electrotechnical Laboratory as senior
researcher. Currently he is principal member of the
technical staff of JPL in the Bio-Inspired Technologies
Group. At JPL, he is responsible for DoD and NASA
applications on evolvable hardware for adaptive computing
that leads to the development of fault-tolerant electronics
and autonomous and adaptive sensor technology. He
participated also as test electronics lead, to Tunable Laser
Spectrometer instrument on Mars Science Laboratory. He
served as the chair, co-chair, and program-chair of the
NASA/ESA Conference on Adaptive Hardware. Didier is a
member of the IEEE.

 13

